## A new disposal strategy in the Schelde-estuary, conciliating port accessibility and nature





**EMBRACING ESTUARIES** Management of Natura 2000 Sites in Estuaries and Sea Ports Workshop: 15 – 16 September 2016, Hamburg, Germany Ir. Yves Plancke

Hamburg, September 16th 2016

## Schelde-estuary



## **Future challenges**















# **Long Term Vision**

- In 2001 Dutch and Flemish government agreed on a LongTerm Vision for the Schelde-estuary, focussing on 3 principal functions:
  - $\rightarrow$  Safety against flooding
  - $\rightarrow$  Port accessibility
  - $\rightarrow$  Ecology



Importance of morphology: "preservation of physical characteristics is the cornerstone for management"





## **Development scheme 2010**

- First phase of LTV: 26 projects to reach intermediate goals:
  - $\rightarrow$  Execution of Actualised Sigmaplan (safety against flooding)
  - → Deepening of navigation channel (accessibility)
  - → Depoldering and reduced tidal areas (nature)
  - $\rightarrow$  ...
- Stakeholder involvement (OAP advising organisations)
- Parallel: disposal strategy could jeopardise physical characteristics feasibility of new disposal strategy "Walsoorden pilot case" (Port of Antwerp Expert Team)





#### New disposal strategy Westerschelde

- Tide-independant draught up to 43' to port of Antwerp
- > 7.7 Mm<sup>3</sup> (capital) + ca. 10 Mm<sup>3</sup>/year (maintenance)
- Uncertainties on potential long term effects
- Three-stage rocket approach



#### 3-step rocket approach: STAGE 1

 EIA most environmental friendly alternative: using dredged material to create new valuable areas for ecology (contributing to "estuarine restoration") => mitigate possible effects



http://potamology.com

# Dredged sediment used to create "soft" flow guiding structures:

- 1. Megadune: splitting flow
- 2. Sandspit: guiding flow

#### E.g. Walsoorden sandbar (type 1):

- Multiple channel system
- Self-eroding capacity sill
- Reduction of currents on sandbar



#### 3-step rocket approach: STAGE 2

 Intensive monitoring (stability sediment, flow velocities, height of intertidal areas, grain size, ecology) and evaluation (bi-monthly meetings + annual evaluation of criteria)



#### 3-step rocket approach: STAGE 3

Stopping works (if necessary) ... but until now effects have been positive !!!

| Location | LD area<br>[ha] |
|----------|-----------------|
| HPW      | -1              |
| HPN      | +51             |
| RVB      | +74             |
| PWA      | +35             |
| SUM      | +159            |
| . \      |                 |

**Flanders** 

State of the Art





Ecotopen Westerschelde 14

R. Jentink 26-5-2016

# **Conclusions I**

#### • LTV 2030:

 $\rightarrow$  Taking into account different estuarine functions

#### Development scheme 2010:

→ Stakeholder involvement

#### Enlargement navigation channel:

- → External expertise introducing new disposal strategy
- → Limitations of knowledge and tools => uncertainty
- $\rightarrow$  3-stage rocket approach, with important role for monitoring and evaluation of results (pre-defined criteria)



# **Conclusions II**

- Holistic approach based on system understanding
- Combining different ecosystem services and functions
  => striving for WIN-WIN-situations
- => MORPHOLOGICAL MANAGEMENT



More information: Ir. Yves Plancke Yves.Plancke@mow.vlaanderen.be Flanders Hydraulics Research Berchemlei 115 B-2140 – Antwerp Belgium